Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation
نویسندگان
چکیده
This work is concerned with the design of a hp-like discontinuous Galerkin (DG) method for solving the two-dimensional time-domain Maxwell equations on non-conforming locally refined triangular meshes. The proposed DG method allows non-conforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. It is an extension of the DG formulation recently studied in [13]. Several numerical results are presented to illustrate the efficiency and the accuracy of the method, but also to discuss its limitations, through a set of 2D propagation problems in homogeneous and heterogeneous media.
منابع مشابه
Analysis of an Hp-Non-conforming Discontinuous Galerkin Spectral Element Method for Wave
We analyze the consistency, stability, and convergence of an hp discontinuous Galerkin spectral element method. The analysis is carried out simultaneously for acoustic, elastic, coupled elastic–acoustic, and electromagnetic wave propagation. Our analytical results are developed for both conforming and non-conforming approximations on hexahedral meshes using either exact integration with Legendr...
متن کاملAnalysis of an hp-Nonconforming Discontinuous Galerkin Spectral Element Method for Wave Propagation
We analyze the consistency, stability, and convergence of an hp discontinuous Galerkin spectral element method of Kopriva [J. Comput. Phys., 128 (1996), pp. 475–488] and Kopriva, Woodruff, and Hussaini [Internat. J. Numer. Methods Engrg., 53 (2002), pp. 105–122]. The analysis is carried out simultaneously for acoustic, elastic, coupled elastic-acoustic, and electromagnetic wave propagation. Our...
متن کاملLocally implicit discontinuous Galerkin method for time domain electromagnetics
In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...
متن کاملConvergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes
In this work, we discuss the formulation, stability, convergence and numerical validation of a high-order leap-frog based non-dissipative discontinuous Galerkin time-domain (DGTD) method for solving Maxwell’s equations on non-conforming simplicial meshes. This DGTD method makes use of a nodal polynomial interpolation method for the approximation of the electromagnetic field within a simplex, an...
متن کاملHigh-Order Leap-Frog Based Discontinuous Galerkin Method for the Time-Domain Maxwell Equations on Non-Conforming Simplicial Meshes
A high-order leap-frog based non-dissipative discontinuous Galerkin timedomain method for solving Maxwell’s equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a N th-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh ...
متن کامل